国产熟女一区二区三区五月婷,人妻少妇偷人精品无码,欧美成人在线视频,欧美巨鞭大战丰满少妇

撥號(hào)18861759551

你的位置:首頁(yè) > 技術(shù)文章 > 介紹反光目標(biāo)

技術(shù)文章

介紹反光目標(biāo)

技術(shù)文章

Introduction to Reflective Objectives

Microscope objectives are one of the most recognizable components of a microscope design. Microscope objectives magnify images so they can be viewed easily by the human eye via an eyepiece or by an imaging system (e.g. imaging lens and camera). Traditional objectives are refractive in design; in other words, they are comprised of a series of optical lenses. However, the need for high magnification focusing optics, chromatically corrected from the deep-ultraviolet to the far-infrared, has prompted industry to develop economical off-the-shelf microscope objectives for these wavelengths - reflective, or mirror-based, objectives are the answer. These objectives employ a reflective design of two or more mirrors to focus light or form an image. For more information on objectives in general, view Understanding Microscopes and Objectives.

 

The most common type of reflective objective is a two-mirror Schwarzschild objective (Figure 1). This system consists of a small diameter "primary" mirror, held in position by a spider mount and a large diameter "secondary" mirror with a center aperture. The primary and secondary mirrors are represented with gold coatings to better illustrate their location within the reflective objective housing. These mirror-based objectives are available in two configurations: infinity corrected for focusing applications and finite conjugate for imaging applications.

Figure 1: Anatomy of a Reflective Objective

 

TYPES OF REFLECTIVE OBJECTIVES

Infinity Corrected Reflective Objectives

Infinity corrected reflective objectives (Figure 2) are ideal for focusing applications. Collimated light (e.g. a laser source) enters the objective through the center aperture in the secondary mirror and comes to focus at its specified working distance. This configuration provides an economical means of focusing broadband or multiple laser sources to a single point. A common application is focusing an infrared (IR) or ultraviolet (UV) laser (such as an Nd:YAG laser) which incorporates a visible reference beam.

Figure 2: Infinity Corrected Reflective Objective Design

 

Finite-Conjugate Reflective Objectives

Finite conjugate reflective objectives (Figure 3) are ideal for imaging applications. They are a straightforward solution that does not require the use of any additional focusing optics. This finite conjugate mirror-based configuration provides excellent resolution, and can typically be used interchangeably with traditional refractive microscope objectives. Infinity corrected reflective objectives can be used in imaging applications with the addition of a tube lens and have the added flexibility of introducing beam manipulation optics into the beam path.

Figure 3: Finite-Conjugate Reflective Objective Design

 

THE BENEFITS OF REFLECTIVE VS. REFRACTIVE MICROSCOPE OBJECTIVE DESIGNS

The primary advantage of reflective objectives versus their refractive counterparts is their chromatic correction over broad spectral ranges. Refractive objectives that offer similar performance in limited ranges, for example the visible spectrum, are fairly popular. However, as the wavelength range begins to exceed the design range, transmission and image performance suffer. In addition, there are numerous reflective coating options available that allow unmatched performance in the deep-UV, IR, and at specific laser wavelengths.

 

Important Reflective Objective Specifications

When comparing reflective objectives, there are two parameters unique to these mirror-based systems that need to be considered: obscuration and transmitted wavefront. In reflective systems, there is a central portion of the primary mirror that does not transfer the rays to the secondary mirror but rather reflects them back out through the stray light baffle. To avoid this, many manufacturers place an absorptive coating over the central part of the primary mirror. There are two other locations were obscuration occurs, namely, the diameter of the primary mirror and the width of the spider legs. It is best to include all contribution of obscuration in the stated value, though some manufacturers only include the contribution of the central obscuration. For example, Edmund Optics® includes all contribution of obscuration in specifications for reflective objectives.

 

Transmitted wavefront error is perhaps the most important parameter for many applications requiring a reflective objective; transmitted wavefront error is the difference between the wavefront from when it enters and exits the system. Recent advances in mirror manufacturing enable production and testing of high accuracy surfaces, creating better corrected systems. Mirrors on the order of λ/20 peak-to-valley (P-V) are achievable and these allow the production of reflective objectives that have a transmitted wavefront ≤ λ/4 P-V. For example, Edmund Optics hard-mounts all fixed TECHSPEC® ReflX™ Reflective Objectives, guaranteeing λ/10 RMS transmitted wavefront on the standard line and λ/4 P-V transmitted wavefront on the high performance line. The fixed line of TECHSPEC® ReflX™ Reflective Objectives is actively aligned and tested on a Zygo GPI-XP Interferometer to ensure that each objective is within specification.

 

While traditional refractive objectives are ideal for a range of applications within a specific wavelength band, reflective objectives can be substituted to increase performance and image quality in broadband applications from the deep-UV to the far-IR. Reflective objectives are ideal for FTIR, laser focusing, and ellipsometry applications where diffraction-limited performance and chromatic correction are crucial.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢(xún)
QQ客服
QQ:17041053
電話(huà)咨詢(xún)
0510-68836815
關(guān)注微信
国产熟女一区二区三区五月婷,人妻少妇偷人精品无码,欧美成人在线视频,欧美巨鞭大战丰满少妇

                jizz国产在线观看| av在线三区| 久久香蕉国产线观看一亚洲综合| 91精品国产自产91精品| 丰满熟妇bbwbbwbbw| 国产精品免费91| hd国产麻豆free性xxhd| 伊伊人成亚洲综合人网香| 探病人妻被隔壁侵犯bd| 欧美丰满老熟妇| 91调教精品网国产| 欧美高潮在线| FBA欧美专线| 国产亚洲精品女人久久久久久 | 国产精品日韩欧美一区二区| 国产精品亚洲精品| 亚洲最大毛片| 新狼窝色AV性久久久久久| 他揉捏她两乳不停呻吟A片| av一区在线播放| 免费丰满少妇毛片高清视频| 8848在线观看高清电影电视剧 | 欧美人与性动交α欧美精品图片| 亚洲国产黄色片| 97人人模人人爽人人喊直播| 99国产精品久久久久久久成人热| 蜜桃AV久久久亚洲精品| 久久亚洲婷婷| 色婷婷wav一区二区| 18久久久久久| 欧美日韩mv| 精品人妻少妇一区二区三区在线| 91ts人妖另类精品系列| 国产电影无码午夜在线播放| 国产精品午夜福利在线观看高清全集| 日本少妇毛茸茸的高潮| 成人色在线观看| 久久精品道一区二区三区| 伊人电影av| 狠狠躁18三区二区一区视频| 日本护士毛茸茸体内精|